Multiply.

1. $(7 x+2)(x+1)$
2. $(x-4)\left(x^{2}-4 x-3\right)$
3. $(x-9)(x-3)$
4. $(x-9)^{2}$
5. $(x+2)(x-2)$
6. $(5 x+1)^{2}$

Factor the following polynomials.
7. $x^{2}-2 x-15$
8. $12 x^{2}-26 x-10$
9. $2 x^{2}+x-3$
10. $9 x^{2}-6 x-15$
11. $x^{2}-6 x+9$
12. $7 x^{2}-22 x+3$
13. $12 x^{2}-3 x$
14. $3 x^{2}-48$
15. $15 x^{2}-17 x+2$
16. $144 x^{2}-81$
17. $2 x^{2}+5 x+3$
18. $20 x^{2}-8 x-28$
19. $4 b^{3}-6 b^{2}+10 b-15$
20. $2 m^{3}+4 m^{2}+6 m+12$
21. $2 x^{3}+x^{2}+8 x+4$
22. $x^{3}-64 x$

Solve the following quadratic equations by FACTORING.
23. $6 x=-x^{2}-8$
24. $3 x^{2}=16 x+12$
25. $2 x^{2}=6 x$
26. $4 x^{2}+x=9+x$
27. $(2 x-4)(3 x+6)=0$
28. $r^{2}+9=10 r$
29. Joey used algebra tiles to model the trinomial $x^{2}-x-6$ as shown below.

What are the factors of this trinomial?
A. $(x+3)(x+2)$
B. $(x+1)(x-6)$
C. $(x-6)(x-3)$
D. $(x-3)(x+2)$

30. The area of a triangle is given by the equation $h^{2}+4 h=192$ where \boldsymbol{h} is the height of the triangle. What is the height of the triangle?
A. 8
B. 12
C. 16
D. 24
E. 48
31. The area of a rectangle is represented by the equation $\boldsymbol{w}^{2}+\mathbf{4 w}=\mathbf{6 0}$, where \boldsymbol{w} is the width of the rectangle. Find the width.
32. Determine the area of a rectangle whose dimensions are $(3 x+2)$ and $(2 x+1)$.
33. The area of a rectangle is represented by the polynomial $x^{2}+3 x-6 x-18$. Which of the following could represent the length and width of the rectangle?
A. Length: $\mathrm{x}+3$ Width: $\mathrm{x}+6$
B. Length: $x-3$ Width: $x-6$
C. Length: $x+3$ Width: $x-6$
D. Length: $x-3$ Width: $x+6$

Review

34. Solve $|3 x+4|=13$
35. The owner of a bookstore recorded the following information from last week.

Number of Customers, \boldsymbol{c}	12	18	24	30	36	42
Amount of Sales, \boldsymbol{s} (in dollars)	80	110	140	170	200	230

According to information in the table, which equation describes the relationship between the number of customers and the amount of sales?
A. $s=6 c+30$
B. $s=c+30$
C. $s=5 c+20$
D. $s=\frac{c+30}{6}$
E. $s=6 c+8$
36. A rectangle's length, I, is 3 times the width, \mathbf{w}. If the perimeter of the rectangle is 96 units, what are the rectangle's dimensions?
A. 12 units and 32 units
B. 4 units and 12 units
C. 8 units and 24 units
D. 36 units and 12 units
37. Haley had a job delivering advertising circulars house to house. She started with 1500 circulars. At the end of 1 hour, she had delivered 185. She plotted her progress each hour showing the number of circulars she had left. After 5 hours her graph looked like this.

Delivery of Circulars

Number of Hours

Based on this information, which is the best prediction of the number of circulars Haley will have left after 8 hours?
A. 485
B. 395
C. 310
D. 275
E. 150

Answers in random order:
$2(2 x-5)(3 x+1) ;-4,-2 ; 25 x^{2}+10 x+1 ; \quad x^{3}-8 x^{2}+13 x+12 ; 3(x-4)(x+4) ; \quad 0,3 ; \quad D ;$ $\mathrm{x}^{2}-12 \mathrm{x}+27 ;(7 \mathrm{x}-1)(\mathrm{x}-3) ; 3(3 \mathrm{x}-5)(\mathrm{x}+1) ; \mathrm{E} ; 3 \mathrm{x}(4 \mathrm{x}-1) ; \mathrm{x}^{2}-4 ; \mathrm{D} ;(2 \mathrm{x}+3)(\mathrm{x}+1) ; 9,1 ;$ $(15 x-2)(x-1) ; x^{2}-18 x+81 ;(x-3)(x-3) ; 7 x^{2}+9 x+2 ; \quad \frac{3}{2}, \frac{-3}{2} ; \quad(x-5)(x+3) ; \quad \frac{-2}{3}, 6 ;$ $9(4 x-3)(4 x+3) ; \quad 3, \frac{-17}{3} ;(2 x+3)(x-1) ; \quad C ; \quad B ; \quad 2,-2 ; x(x+8)(x-8) ; 4(5 x-7)(x+1) ; 6 ; C$; $\left(x^{2}+4\right)(2 x+1) ; \quad\left(2 b^{2}+5\right)(2 b-3) ; \quad 2\left(m^{2}+3\right)(m+2) ; \quad 6 x^{2}+7 x+2$

