\qquad

Properties of Exponents - Day 2

Simplify each expression.

1) $\left(\mathrm{t}^{2}\right)^{2}\left(\mathrm{t}^{5}\right)^{2}=$	2) $\left(\frac{5 y^{4}}{y}\right)^{3}=$	3) $\left(3 \mathrm{mn}^{2}\right)^{3}=$
4) $\left(2 x^{\frac{1}{2}} \mathrm{y}\right)^{3} \mathrm{x}^{2}=$	5) $(\mathrm{xy})^{3}\left(\mathrm{x}^{2} \mathrm{y}\right)^{2}=$	6) $\left(3 \mathrm{~b}^{2}\right)^{2}\left(\mathrm{a}^{2} \mathrm{~b}^{4}\right)^{3}=$
7) $9 \mathrm{~m}^{3}\left(6 m^{\frac{1}{3}} \mathrm{n}^{4}\right)=$	8) $\left(6 \mathrm{a}^{4} \mathrm{c}^{2}\right)\left(-4 \mathrm{a}^{5} \mathrm{~b}^{3} \mathrm{c}\right)(2 \mathrm{abc})=$	9) $\frac{a^{5} b^{\frac{3}{2}} c^{3}}{a^{2} b^{2} c^{\frac{4}{3}}=}$
10) $\frac{-3 x^{4} \mathrm{y}^{5}}{12 \mathrm{x}^{2} \mathrm{y}}=$		

13) Find the area of the square that has side length $5 a^{6}$.
14) The area, A, of a parallelogram is $30 x^{12} y^{9}$ square feet. The height, h, of the parallelogram is $5 x^{5} y^{2}$. The area of a parallelogram can be found by using the formula $A=b h$. Find the length of this parallelogram's base, b.
15) A rectangular prism has a length of $a^{2} b$, a width of $a^{\frac{1}{2}} b^{2}$, and a height of $a^{\frac{1}{2}} b^{6}$. Which expression represents the volume of the rectangular prism?
16) Which expression represents $\left(-3 x^{\frac{1}{3}}\right)^{2}\left(4 x^{\frac{1}{4}}\right)^{4}$ in simplest form?

REVIEW.

17) Find the value of q that makes the following proportion true.

$$
\frac{q+2}{5}=\frac{2 q-11}{7}
$$

18) Translate into an equation: "The difference of half a number and 7 is the same as the sum of the number and 13."

Equation:
**Bonus: Solve the equation you wrote for \#18.

