PARALLEL & PERPENDICULAR LINES - Day 1

Tell whether the lines are parallel, perpendicular, or neither.

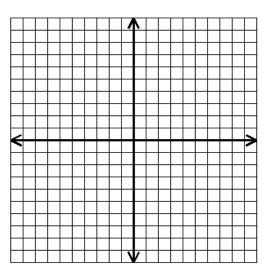
1	$y = 4x + 5$ and $y = -\frac{1}{4}x + 4$
2	y = 5x + 3 and $y = -5x + 8$
3	$y = \frac{x}{3} - 4$ and $y = \frac{1}{3}x + 2$
4	y = x and $y = x + 2$

Write the equation, in slope-intercept form, of the line that passes through the given point and is *perpendicular* to the given line.

x = 2 and y = 9

6	$(-3, 1); y = \frac{1}{3}x + 2$
7	$(4, -3); y = -\frac{2}{7}x - 2$

Write the equation, in slope-intercept form, of the line that passes through the given point and is parallel to the given line.


8. _____ (-6, 4);
$$y = -\frac{3}{2}x + 2$$

9.			

(6, 1);
$$y = \frac{1}{3}x - 4$$

REVIEW PROBLEMS. Show ALL work!

10. Graph: 2x - 3y = 6

11. Solve
$$8y - 3(4 - 2y) = 6(y + 1)$$

12. Solve
$$\frac{x-3}{5} = \frac{x+6}{2}$$

Answers in random order: Neither, Parallel, Parallel, Perpendicular, Perpendicular, $\frac{9}{4}$,

$$y = -\frac{3}{2}x - 5$$
, $y = -3x - 8$, -12 , $y = \frac{7}{2}x - 17$, $y = \frac{1}{3}x - 1$, $y = \frac{2}{3}x - 2$