MAKING CONNECTIONS: FUNCTIONS

The price of a small pizza is $\$ 6.00$ plus $\$ 0.75$ per topping. Complete each representation for this scenario below.

Number of Toppings, x	Total Cost, y
0	
1	
2	
3	
4	
5	
6	
7	
8	

Graph

\square

1. The independent quantity is \qquad
The dependent quantity is \qquad
The total cost of the pizza depends on \qquad .
2. Write a function to represent the relationship between "c", the cost of the pizza, and " t " the number of toppings.
3. What value represents the rate of change?

Meaning of the rate of change \qquad
4. What value represents the y-intercept? \qquad
Meaning of the y-intercept \qquad

Rewrite the function from \#2: \qquad
Use it to answer the following questions.
5. If you want 5 toppings and double each topping what will the pizza cost? \qquad
6. Suppose you have $\$ 15$ to spend on pizza. How many toppings can you order?
7. Suppose the price of each topping changed to $\$ 0.50$.

How would this change the equation? \qquad
New Function: \qquad
Effects on the graph: \qquad
8. Suppose the price of a pizza with no toppings was changed to $\$ 5.00$ and the price of each topping remained $\$ 0.75$.

How would this change the equation? \qquad
New Function:
Effects on the graph: \qquad
With your $\$ 15$, you can now afford \qquad toppings.

