NAME
DATE
PER.

FALL FINAL EXAM REVIEW - ALGEBRA 1

Solve.

1.	$24=6-3 v$	2.	$12=-3(c+5)$
3.	$5-2(x-3)=63$	4.	$7 x+2=5 x+8$
	$\frac{r+1}{10}=\frac{3}{-2}$	6.	

Write an equation, and then solve.

7. Ben joined The Fitness Place for an initial membership fee of $\$ 55$ and $\$ 32$ per month. If he paid a total of $\$ 279$, how many months was Ben a member?

Equation: \qquad
8. A decorator charges $\$ 40$ for an initial consultation, then $\$ 80$ per hour. Another decorator just charges $\$ 90$ per hour. How long is a job for which the two decorators charge the same price?

Equation: \qquad
9. If the perimeter of the rectangle below is 42 , find the value of x.

Equation: \qquad

Solve.

10. $9-3 d>-9$	11. $3 t-6>6(t+1)$

Write an inequality, and then solve.
12. Tammy earns money by mowing lawns for her neighbors. She currently has $\$ 75$ and plans to mow lawns until she has at least $\$ 200$ in savings. If she earns $\$ 20$ for every lawn she mows, how many more lawns does she have to mow to reach her goal?

Inequality: \qquad

Simplify.

13. $-4 a^{4} \cdot-5 a^{3}$	14. $\frac{-15 a^{4} b^{3}}{18 a^{2} b^{6}}$
$15 . \frac{20 a^{-5} b^{6} c^{0}}{4 a^{6} b^{2}}$	16. $\frac{\left(6 a^{2}\right)\left(4 a^{6}\right)}{3 a^{7}}$

Use the graph shown to answer the questions 17-20.
17. List the ordered pairs
18. Create a mapping.

19. Identify the domain and range.
$\mathrm{D}=$ \qquad
$R=$ \qquad

Answer the following.

21. Which of the following mappings represents y as a function of x ?
A.

B.

C.

22. Which of the following sets does not represent a function?
A. $\{(-1,2),(-2,2),(-3,2),(-4,2)\}$
B. $\{(-5,4),(-1,5),(-5,2),(-1,7)\}$
C. $\{(5,-2),(-3,6),(1,8),(7,5)\}$
D. $\{(6,-2),(3,9),(-3,5),(9,-1)\}$
23. Find the range for $f(x)=-3 x^{2}+4$ for the domain $D=\{1,-2,-3\}$
24. If $f(x)=2-3 x$ find $f(-3)$.

Identify the domain and range of each graph.
25.

D = \qquad
$\mathrm{R}=$ \qquad
27. Mrs. Barrett is planning to place a fence around her vegetable garden. The fencing costs $\$ 1.85$ per yard and the delivery fee is $\$ 65.50$.
a) Write an equation that can be used to find the total cost, c , of y yards of fencing.

Equation:

\qquad
b) How much would it cost for 75 yards of fencing? \qquad
c) If the total cost is $\$ 141.72$, how many yards of fencing were purchased? \qquad
d) Circle one: The domain of this relationship is discrete / continuous.
e) \qquad Mrs. Barrett estimates that she needs between 50 to 60 yards of fencing to enclose her garden. What is a reasonable range for this situation?
A. $156 \leq \mathrm{c} \leq 178$
B. $\{156,178\}$
C. $158 \leq \mathrm{c} \leq 176.5$
D. $\{158,176.5\}$
28. Suppose the total cost, C, of renting a car is $\$ 25$ per day, d , plus an initial fee of $\$ 100$.
a) Write a function that best describes this relationship if d represents the number of days the car is rented.
b) What would be the total cost of renting a car for 9 days?
c) Find the number of days you could rent a car for $\$ 275$.
29. Determine the slope of the line shown.

30. Find the slope of the line through the points $(3,7)$ and $(-1,-4)$.
$\mathrm{m}=$ \qquad

Identify the slope and y-intercept, then sketch the graph of each equation.
31. $y=\frac{3}{5} x-4$
$\mathrm{m}=$ \qquad
$b=$ \qquad

Identify the slope and y-intercept, then sketch the graph of each equation.
32. $4 x+2 y=10$
$\mathrm{m}=$ \qquad
$\mathrm{b}=$

33. $3 x-y=5$

$$
\mathrm{m}=
$$

\qquad
$b=$ \qquad

34. $y=-5$

$\mathrm{m}=$
$\mathrm{b}=$ \qquad
35. $x=4$

$\mathrm{m}=$ \qquad
b = \qquad
36. What is the equation of the line shown in the graph?

Equation: \qquad

37. Find the rate of change and y-intercept of the line with the equation $5 x-y=6$.
38. If $(x,-6)$ is a solution to the equation $3 x+2 y=18$, what is the value of x ?
39. If the point $(5, y)$ is a solution to the equation $2 x-4 y=30$, what is the value of y ?
40. Using the graph shown answer the following.
a) What is the x-intercept?
b) What is the y-intercept?

Using the given information, write the equation of each line.

41.	has a slope of -4 and goes through the point $(-6,2)$
42.	passes through $(2,7)$ and $(-4,4)$
43.	x-intercept of 6 and y-intercept of 4
44.	a line with an undefined slope that passes through the point $(-6,3)$
46.	parallel to $y=\frac{5}{3} x+2$ and goes through $(-6,-3)$
45.	

49. Graph $6 x+2 y<-14$

50. In \#49, which of the following coordinates represents a solution to the inequality?
A. $(1,10)$
B. $(-4,2)$
C. $(-2,1)$
D. $(-1,-4)$
51. Graph $x+y>3$
$-4 x+y \leq 4$

52.

x	1	2	3
y	3	5	7

a) Find the function that could be used to represent the table above.
b) What is the value of y when x is 5 ?
53. Does the table shown represent a direct variation? If so, write its equation.

x	y
3	9
6	18
9	27

54. If y varies directly as x, and y is 72 when x is 30 , find the equation that represents this situation.

Answers in Random Order:

4	-16	$\frac{-5 a^{2}}{6 b^{3}}$	$y=2 x+1$	$(0,5)$ or 5	(0, -4) or -4	$x \geq-3, y \leq 5$
-1	$\mathrm{x}<-4$	8a	$y=\frac{1}{2} x+6$	$y=-4 x-22$	Yes	$\{-5,-2,0,3,7\}$
-9	$\mathrm{x}<6$	4	$y=-\frac{1}{6} x-3$	$y=\frac{12}{5} x$	5	$\begin{aligned} & -4 \leq x<2 \\ & -2<y \leq 4 \end{aligned}$
3	$x \geq 7$	325	$y=\frac{5}{3} x+7$	(0, -5) or -5	0	\{0, -4, 1, 6, 2\} $\quad 0$
7	B	$20 a^{7}$	$\mathrm{x}=-6$	continuous	$\frac{-5}{4}$	
-6	B	-2	$y=-6$	10	$(-3,0)$	$\mathrm{C}=1.85 \mathrm{y}+65.5$
$\frac{5 b^{4}}{a^{11}}$	C	41.2	$y=-\frac{2}{3} x+4$	$y=\frac{1}{3} x-1$	3	$\begin{aligned} & \{(-5,0),(-5,-4),(-2,1), \\ & (0,6),(3,-4),(7,2)\} \end{aligned}$
$\frac{3}{5}$	C	none	$y=-6 x-12$	(0, -6)	(0, -4)	(0, -5) or -5
-26	11	$\frac{11}{4}$	7	-5	11	No; x 's are not all different
			undefined	204.25	$y=3 x$	$C=25 d+100$

