\qquad DATE PER.

FACTORING POLYNOMIALS - Day 1
Factor each polynomial. Look for GCF first!

1. $x^{2}+7 x+12=$	2. $4 x^{2}+56 x+160=$
3. $x^{2}+5 x-24=$	4. $x^{2}-16 x+48=$
$5 . x^{2}-2 x-35=$	$6.2 x^{2}+8 x-42=$
$7 . x^{2}+9 x-52=$	$10.3 x^{2}-12 x-36=$

11. $2 x^{2}-2 x-40=$	12. $2 x^{2}+16 x+30=$
13. $4 x^{2}+48 x+128=$	$14 . x^{2}-10 x+21=$

Answer the following. Show all work.

15. Which of the following shows $3 x^{2}-19 x+6$ in factored form?
A. $(3 x+1)(x+6)$
B. $(3 x-1)(x-6)$
C. $(3 x+1)(x-6)$
D. $(3 x-1)(x+6)$
16. The Math Club sold concessions at a football game. They used 300 hamburger buns and made $\$ 1000$. If the hamburgers sold for $\$ 3$ each and cheese burgers for $\$ 3.50$ each, which is a reasonable solution for the number of hamburgers sold?
A. 50
B. 100
C. 200
D. 300
17. What is the slope of the line whose equation is $5(2 x-3)=-8 y+2$?
A. $\frac{7}{8}$
B. $\frac{5}{4}$
C. $-\frac{7}{8}$
D. $-\frac{5}{4}$
