\qquad

SOLVING SYSTEMS OF EQUATIONS BY GRAPHING

1. Use the grid to graph $y>x-2$. Which coordinate point represents a solution of this inequality?

A. $(4,0)$
C. $(-3,-5)$
B. $(7,2)$
D. $(-2,3)$

A system of equations is \qquad or \qquad equations.

Here is an example of a simple system of equations:

$$
\begin{aligned}
& x+y=5 \\
& (x)(y)=6
\end{aligned}
$$

Solving a system of equations like the one above means finding an x and y value that make both equations true.

Solution: $\mathrm{x}=$ \qquad and $\mathrm{y}=$ \qquad , which can also be written as an ordered pair \qquad , \qquad).

1) Tell whether the ordered pair is a solution to the system of equations. SHOW YOUR WORK!

$$
\begin{gathered}
-3 x+2 y=-4 \\
x+y=3
\end{gathered}
$$

$$
\begin{array}{ll}
(-3,-10) & x-y=7 \\
& 3 x-y=-19
\end{array}
$$

Solve each system of equations by graphing.
2) $y=-2 x-1$
$y=-x+3$

Therefore, the solution to a system is the where the two lines \qquad .

Solution:
3) $\begin{aligned} 2 x+y & =2 \\ x-y & =4\end{aligned}$

Solution:

Solution: \qquad
5) $x-2 y=-8$
$3 x-6 y=-24$

Solution: \qquad

Conclusion:

- Systems have 1 solution if the lines \qquad .
- Systems have NO solution if the lines are \qquad .
- Systems have INFINITELY many solutions if the lines are the \qquad .

