BELL WORK

1. On a map of downtown, $12^{\text {th }}$ Street is perpendicular to Avenue J. The equation $y=-4 x+3$ represents $12^{\text {th }}$ Street. What is the equation representing Avenue J if it passes through the point $(8,16)$?
A. $y=-4 x+48$
B. $y=-4 x+14$
C. $y=\frac{1}{4} x+3$
D. $y=\frac{1}{4} x+14$

Review: Solve the system of equations by graphing.

1) $2 x+y=-8$
$x-3 y=3$

Solution:

We can solve this same system of equations by another method using matrices.
A matrix is a rectangular arrangement of numbers in rows and columns.
The number of rows (horizontal) and the number of columns (vertical) determine the dimensions of the matrix. The dimensions of a matrix are always written in rows X columns.

What are the dimensions of these matrices?
A. $\left[\begin{array}{cc}2 & 0 \\ 7 & 15 \\ -3 & 19\end{array}\right]$
B. $\left[\begin{array}{l}3 \\ 0\end{array}\right.$
$\left.\begin{array}{l}9 \\ 0\end{array}\right]$
C. $\left[\begin{array}{cc}-3 & 3 \\ 8 & -1\end{array}\right]$

Systems can be solved using matrices in your calculator using the same mathematical principle used to solve this equation:

$$
2 x=14
$$

To solve, you can \qquad by 2 or \qquad by the inverse of 2 , which is \qquad .

Calculator Steps to Solving a System of Equations using Matrices:
Step 1: Make sure equations are in standard form ($a x+b y=c$)
Step 2: Press ALPHA F3 (to go to Matrix)
Step 3: Choose row dimension, press ENTER
Step 4: Arrow down and choose column dimension, press ENTER
Step 5: Arrow down to OK, press ENTER
Step 6: Type the numbers into the matrix using the arrow buttons (this is Matrix A)
Step 7: Arrow to the right of the matrix and press x^{-1}
Step 8: Press ALPHA F3 and enter matrix B following Steps 2-6
Step 9: Arrow to the right of the matrix and press ENTER

Solve each system below using matrices.
2) $2 x+y=-8$
$x-3 y=3$
$[x] \quad[A]^{-1}$
[B]
$\left[\begin{array}{l}- \\ -\end{array}\right]=\left[\begin{array}{ll}- & - \\ -\end{array}\right]^{-1}\left[\begin{array}{l}- \\ -\end{array}\right.$
3) $-x+y=-4$
$2 x-y=11$

$$
[-]=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]^{-1}\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

Solution: \qquad
4) $15 x-12 y=13$
$30 x+9 y=4$

Solution: \qquad

