ANALYZING QUADRATIC FUNCTIONS - DAY 2

Round answers to the nearest tenth, if necessary.

1. Find the solutions to $x^{2}-9 x+20=0$.
2. Find the x-intercepts of $y=x^{2}+3 x-18$.
3. What are the zeros of $x^{2}+12 x+35=0$?
4. What is the vertex of $y=-x^{2}-x+6$.
5. What are the roots of $3 x^{2}+2 x=6$?
6. What are the zeros of the function $f(x)=3 x-9$?
7. What is the minimum point of $f(x)=x^{2}+8 x+12$?
8. Find the vertex, x - and y-intercepts of $y=-3 x^{2}-6 x+2$?
9. Martin likes to cook for guests. The amount of time, t, that Martin spends cleaning the kitchen is directly proportional to the number of guest, g, he serves. It takes 30 minutes to clean up the kitchen after serving 4 guests. Which of the equations represents the equation of direct variation?
A. $g=\frac{30}{8} t$
B. $t=\frac{60}{4} g$
C. $g=\frac{2}{15} t$
D. $t=\frac{15}{2} g$
10. If $(x,-3)$ is a solution to the equation $3 x-2 y-15=0$, what is the value of x ?
11. The perimeter of a rectangle is 24 inches. The width of the rectangle, W, is one-third its length. Which system of equation best represents this situation?
A. $2 L+2 W=24$
C. $2 L+2 W=24$
$L=\frac{1}{3} W$
$W=\frac{1}{3} L$
B. $L+W=24$
D. $L+W=24$
$L=\frac{1}{3} W$
$W=\frac{1}{3} L$
12. The area of a rectangle is $30 m^{11} n^{5}$ square units. If the length of the rectangle is $6 m^{4} n^{2}$ units, how many units wide is the rectangle? $(m \neq 0$ and $n \neq 0)$
A. $5 m^{7} n^{3}$ units
B. $24 m^{7} n^{3}$ units
C. $36 m^{15} n^{7}$ units
D. $180 m^{15} \mathrm{n}^{7}$ units
13. Which expression describes the area in square units of a rectangle that has a width of $4 x^{3} y^{2}$ and a length of $3 x^{2} y^{3}$?
A. $12 x^{6} y^{6}$
B. $12 x^{5} y^{5}$
C. $7 x^{6} y^{6}$
D. $7 x^{5} y^{5}$

Answers in random order : A, $-7,-1.8,3, C, 5,(0.3,0),(-6,0),(-4,-4), 4,-5, D,(3,0), 1.1$, $(-2.3,0), B,(-0.5,6.25),(-1,5),(0,2), 3$

