$\qquad$

## Making Connections

The total bill for each customer at the lemonade stand is a function of the number of glasses of lemonade purchased. This relationship can be represented by $f(x)=\{(1, \$ 2.50),(2, \$ 5.00),(3, \$ 7.50),(4, \$ 10.00)\}$.

1. The total bill depends on $\qquad$ .
2. Complete the table

| Number of <br> Glasses, $x$ | Total Bill, $y$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |

3. The independent quantity is $\qquad$
4. The dependent quantity is $\qquad$
5. Write a function to represent the relationship between "b", the total bill for "g" number of glasses.
6. If the customer spent $\$ 22.50$ at the lemonade stand, how many glasses of lemonade did they purchase?
7. Which mapping diagram best represents the function $f(x)=-2 x^{2}-2$ when the domain of the function is $\{-2,0,1\}$ ?
A

B

C

D

8. The table below shows the relationship between the total tuition costs, T and the number of semester hours taken at Cambridge College. Write the equation that represents this data.

| Semester <br> Hours <br> Taken, h | Total Tuition <br> Costs, T |
| :---: | :---: |
| 3 | 685 |
| 6 | 820 |
| 9 | 955 |
| 12 | 1090 |

9. The figure below shows a pattern. Find the expression that could be used to determine the number of triangles in the $\mathrm{n}^{\text {th }}$ figure.

10. How many triangles would there be in the $8^{\text {th }}$ figure of the pattern shown in $\# 9$ ?
11. Graph $5 x+4 y=-12$

12. Find the $x$ and $y$ intercepts of $6 x-3 y=18$.
13. Graph the inequality $4 x-3 y \geq-12$

14. Write the inequality that is represented by this graph.

15. Use the grid to graph $y<x+4$. Which coordinate point represents a solution of this inequality?

A. $(-8,2)$
B. $(2,0)$
C. $(-2,2)$
D. $(0,6)$
16. Write the linear function that includes the points $(4,9)$ and $(-2,-6)$.
17. What is the equation of the linear function graphed below?


Equation: $\qquad$
19. Graph $2 x-3 y=6$

18. What are the slope and y-intercept of the equation of the line graphed below?

$\mathrm{m}=$ $\qquad$ $\mathrm{b}=$ $\qquad$
20. The graph of a line is shown below.


If the slope of this line is multiplied by -2 and the y-intercept increases by 1 , what is the equation of the new line?
21. Write the equation of a vertical line that contains the point (-1, -9$)$.

## Systems of Equations

Solve each system by the method specified.
22. Solve by graphing.

$$
\begin{gathered}
3 x+4 y=12 \\
x+2 y=4
\end{gathered}
$$



Solution: $\qquad$


Solution: $\qquad$
24. Solve using matrices.
$2 x+5 y=17$
$6 x-5 y=-9$
25. Solve using matrices.

$$
\begin{aligned}
& 5 x-9 y=-3 \\
& 4 x-3 y=6
\end{aligned}
$$

Solution: $\qquad$
26. Two lines have the given equations. At what point do they intersect?

$$
\begin{gathered}
y=2 x-1 \\
3 x-y=-6
\end{gathered}
$$

For each word problem, set up a system of equations, and solve for the value(s) indicated.
27. If 8 pens and 7 pencils cost $\$ 3.37$ while 5 pens and 11 pencils cost $\$ 3.10$, how much does each pen and pencil cost?

Equations: $\qquad$
$\qquad$

Solution: $\qquad$
28. Timmy has 180 marbles, some plain and some colored. If there are 32 more plain marbles than colored marbles, how many colored marbles does he have?

Equations: $\qquad$
$\qquad$

Solution:
29. If $(x,-3)$ is a solution for the following system of equations, what is the value of $x$ ?

$$
\begin{aligned}
& 4 x-y=15 \\
& 3 x+y=6
\end{aligned}
$$

30. Holt bought a large pizza and a liter of drink for $\$ 11$, not including tax. If the price of the pizza, $p$, is 5 more than 3 times the price of the drink, $d$, write the system of linear equations that could be used to find the cost of the pizza and the drink. (do not solve)

Equations: $\qquad$
31. A math test has 25 problems. Some are worth 2 points, and some are worth 3 points. The test is worth 60 points total. If $x$ represents the number of 2 point problems and $y$ represents the number of 3 point problems, which system of equations could be used to find how many 3 point problems are on the test?
A. $x+y=25$
C. $x+y=25$
$3 x+2 y=60$
$2 x+3 y=60$
B. $x+y=60$
$3 x+2 y=25$
D. $x+y=60$
$2 x+3 y=25$
32. Kristi made 48 cookies. The number of chocolate chip cookies she made was 3 more than 3 times as many sugar cookies. Which system of equations can be used to find how many chocolate chip cookies, c, and sugar cookies, s, Kristi made?
A. $\begin{array}{r}\mathrm{s}+\mathrm{c}=48 \\ \mathrm{c}=3 \mathrm{~s}+3\end{array}$
C. $s+c=3$
$c=3 s+48$
B. $\mathrm{s}-\mathrm{c}=48$
D. $s+c=48$
$s=3 c+3$
$c=3 s-3$

## Polynomials \& Factoring

## Answer the following.

33. Simplify the algebraic expression $4\left(x^{2}-4 x+6\right)-2 x(x-5)$.
34. Find the perimeter of the triangle whose sides are $5 x^{2}+6 x-1,3 x^{2}-2 x-4$, and $x^{2}-x+7$.
35. Find the product $(4 x-3)(6 x+1)$.
36. A rectangle has a width of $3 x+4$ and a length of $2 x-5$, find the expression that would represent the area of the rectangle.

Factor completely.

| 37. $\mathrm{x}^{2}+3 \mathrm{x}-18$ | $38 . \mathrm{a}^{2}-144$ |
| :--- | :--- |
|  |  |


| 39. $2 a^{3}+8 a^{2}-18 \mathrm{a}$ | $40.3 x^{2}-12 x-36$ |
| :--- | :--- |
| $41 . x^{2}+16 x+48$ | $42 . x^{2}-19 x+78$ |
| $43.3 a^{2}-243$ | $44.6 x^{2}+30 x-42$ |

