Name_____

TRANSFORMATIONS OF QUADRATIC FUNCTIONS – Day 1

Recall that the most basic linear function is the **linear parent function** with the equation ______.

The most basic quadratic function is the **quadratic parent function** with the equation ______.

Changing the parameters of the quadratic parent function affects the graph in various ways. Let's see how...

Graph the following functions on your calculator, and describe the change.

2. $y_1 = x^2$ $y_2 = 2x^2$ $y_3 = 5x^2$	3. $y_1 = x^2$ $y_2 = \frac{1}{2}x^2$ $y_3 = \frac{1}{5}x^2$
How does the graph of $y = x^2$ change?	How does the graph of $y = x^2$ change?
4. $y_1 = x^2$ $y_2 = -x^2$	5. $y_1 = x^2$ $y_2 = x^2 + 5$ $y_3 = x^2 - 5$
How does the graph of $y = x^2$ change?	How does the graph of $y = x^2$ change?

In the general equation $y = ax^2 + d...$

EXAMPLES: Match the equations to the graphs, and determine the domain and range.

10. The graphs of f(x) and g(x) are shown.	1	
a) If $f(x) = x^2 - 7$, what is the equation for $g(x)$?		
b) How does the graph of f(x) compare to the graph of g(x)?		
11. If $f(x) = x^2 + 3$ is shifted down 6 units, what would be the new equation for the translated function?		
12. How does the graph of $y = 2x^2 + 4$ compare with the graph of $y = 2x^2 - 1$?		
A. The graph of $y = 2x^2 + 4$ is 5 units above the graph of $y = 2x^2 - 1$.		
B. The graph of $y = 2x^2 + 4$ is 3 units below the graph of $y = 2x^2 - 1$.		
C. The graph of $y = 2x^2 + 4$ is 5 units to the right of the graph of $y = 2x^2 - 1$.		
D. The graph of $y = 2x^2 + 4$ is 3 units to the left of the graph of $y = 2x^2 - 1$.		
13. Start with the graph of $y = x^2$, write an equation that will		
a) Vertically compress it:		
b) Vertically stretch it:		
c) Translate it up:		
d) Translate it down:		