\qquad

TRANSFORMATIONS OF QUADRATIC FUNCTIONS - Day 1

Recall that the most basic linear function is the linear parent function with the equation \qquad .

The most basic quadratic function is the quadratic parent function with the equation \qquad .

1. Make a table and graph the quadratic parent function, $y=x^{2}$.

Vertex: \qquad
Axis of Symmetry: \qquad

X	y

Intercepts: \qquad
Domain: \qquad
Range:

Changing the parameters of the quadratic parent function affects the graph in various ways. Let's see how...

Graph the following functions on your calculator, and describe the change.
2. $\begin{aligned} & y_{1}=x^{2} \\ & y_{2}=2 x^{2} \\ & y_{3}=5 x^{2}\end{aligned}$

How does the graph of $y=x^{2}$ change?
4. $\begin{aligned} y_{1} & =x^{2} \\ y_{2} & =-x^{2}\end{aligned}$

How does the graph of $y=x^{2}$ change?
3. $y_{1}=x^{2}$
$y_{2}=\frac{1}{2} x^{2}$
$y_{3}=\frac{1}{5} x^{2}$
How does the graph of $y=x^{2}$ change?
5. $\mathrm{y}_{1}=\mathrm{x}^{2}$
$y_{2}=x^{2}+5$
$y_{3}=x^{2}-5$
How does the graph of $y=x^{2}$ change?

In the general equation $y=a x^{2}+d . .$.
If $a>1$, the graph \qquad vertically.

When $0<a<1$, the graph \qquad vertically.

When $a<0$, the graph \qquad across the x-axis.

Changing a causes a vertical stretch, compression, and/or reflection.

When $d>0$, the graph shifts \qquad d units.

When $d<0$, the graph shifts \qquad d units. \int

Changing d causes a vertical translation.

EXAMPLES: Match the equations to the graphs, and determine the domain and range.
6.

D: \qquad
R: \qquad
7. \qquad
D: \qquad

R: \qquad
8. \qquad

D: \qquad
R : \qquad
9.

D: \qquad
B.

D.

A.

$y=x-2$

R: \qquad
C.

R
10. The graphs of $f(x)$ and $g(x)$ are shown.
a) If $f(x)=x^{2}-7$, what is the equation for $g(x)$?
b) How does the graph of $f(x)$ compare to the graph of $\mathrm{g}(\mathrm{x})$?

11. If $f(x)=x^{2}+3$ is shifted down 6 units, what would be the new equation for the translated function?
12. How does the graph of $y=2 x^{2}+4$ compare with the graph of $y=2 x^{2}-1$?
A. The graph of $y=2 x^{2}+4$ is 5 units above the graph of $y=2 x^{2}-1$.
B. The graph of $y=2 x^{2}+4$ is 3 units below the graph of $y=2 x^{2}-1$.
C. The graph of $y=2 x^{2}+4$ is 5 units to the right of the graph of $y=2 x^{2}-1$.
D. The graph of $y=2 x^{2}+4$ is 3 units to the left of the graph of $y=2 x^{2}-1$.
13. Start with the graph of $y=x^{2}$, write an equation that will...
a) Vertically compress it: \qquad
b) Vertically stretch it: \qquad
c) Translate it up: \qquad
d) Translate it down: \qquad

