TRANSFORMATIONS OF QUADRATIC FUNCTIONS - Day 4

The transformation form of a quadratic function $f(x)=a(x-c)^{2}+d$ is also said to be written in vertex form. This means that:

The vertex of the parabola is $(\boldsymbol{c}, \boldsymbol{d})$.
The line $\boldsymbol{x}=\boldsymbol{c}$ is the axis of symmetry of the parabola.
The maximum or minimum value of the function is d.
If $f(x)=x^{2}$, write the equation of the new function, $g(x)$, under each of the following transformations.
\qquad
$g(x)=$

Which function is equivalent to $\mathrm{g}(\mathrm{x})$?
A. $h(x)=x^{2}+4$
B. $h(x)=x^{2}-16$
C. $h(x)=x^{2}-8 x+16$
D. $h(x)=x^{2}+8 x+16$
3) Reflect $f(x)$ across the x-axis, shift up 2 units, and left 6 units

$$
g(x)=
$$

\qquad

Which function is equivalent to $\mathrm{g}(\mathrm{x})$?
A. $h(x)=-x^{2}-34$
B. $h(x)=-x^{2}-12 x-34$
C. $h(x)=x^{2}-12 x+36$
D. $h(x)=x^{2}+12 x+38$
2) Shift the vertex of $f(x)$ to (5, -3)
$g(x)=$ \qquad

Which function is equivalent to $\mathrm{g}(\mathrm{x})$?
A. $h(x)=x^{2}+22$
B. $h(x)=x^{2}-10 x+22$
C. $h(x)=x^{2}-10 x+25$
D. $h(x)=x^{2}-10 x-25$
4) Translate the axis of symmetry right 7 units and stretch $f(x)$ by a factor 2 .

$$
g(x)=
$$

\qquad

Which function is equivalent to $\mathrm{g}(\mathrm{x})$?
A. $h(x)=2 x^{2}-28 x+98$
B. $h(x)=x^{2}-14 x+49$
C. $h(x)=2 x^{2}+49$
D. $h(x)=4 x^{2}-28$

For each of the following, determine the vertex, the axis of symmetry, the maximum or minimum value, and the domain and range.
5) $y=6(x-5)^{2}-1$
6) $y=-3(x-1)^{2}+4$

Vertex: \qquad Max or min value: \qquad
Axis of symmetry: \qquad D: \qquad R: \qquad
7) $y=(x+4)^{2}$
8) $y=x^{2}$

Vertex: \qquad Max or min value: \qquad
Axis of symmetry: \qquad D: \qquad R: \qquad
Using the given information, answer the following.
9)

Vertex: \qquad

Which of the following is the equation of the given graph?
A. $\quad h(x)=-3(x+3)^{2}-1$
B. $h(x)=-3(x-3)^{2}-1$
C. $\quad h(x)=-2(x+3)^{2}-1$
D. $h(x)=-2(x-3)^{2}-1$
10) Which of the following graphs is a parabola with vertex $(-10,0)$ that passes through $(1,60.5)$?
A. $h(x)=2(x+10)^{2}$
B. $h(x)=\frac{1}{2}(x+10)^{2}$
C. $h(x)=(x+1)^{2}+60.5$
D. $h(x)=\frac{1}{2}(x-10)^{2}-60.5$

