The transformation form of a function $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{f}(\boldsymbol{x}-\boldsymbol{c})+\boldsymbol{d}$ also applies to linear functions, not just quadratic functions.

As they do for quadratic functions, \boldsymbol{c} and \boldsymbol{d} shift linear functions left/right and up/down.
The factor \boldsymbol{a} still causes a "stretch" or "compression," which causes lines to get "steeper" or "less steep."

For each example, describe the transformation of the graph of $f(x)=x$ that produces the graph of $g(x)$ and write the new equation.

If $f(x)=x$ and $g(x)$ is the transformed function, fill in the table below.

Transformation	$\mathbf{g (x)}$
5) Shift $f(x)$ up 3 units	
6) Reflect $f(x)$ across the x-axis	
7) Compress (less steep) by a factor of $\frac{1}{2}$, and shift right 2 units.	
8)	$\mathbf{g (x) = (x + 5)}$
9) Reflect across the x-axis, and translate 6 units down	
10) Vertical stretch (steeper) by a factor of 3, and translate right 4.5 units	
11)	$\mathbf{g (x) = \frac { 1 } { 2 } (x + 7) + 4}$

For Examples 12 -16, $f(x)$ can be linear or quadratic. Match the given equation with the transformation described. Each question may have more than one answer.

$$
\text { 12) } g(x)=\frac{1}{2} f(x-2) \quad \text { A. Vertical Stretch (steeper) }
$$

13) $g(x)=3 f(x+7)-1$
B. Vertical Compression (less steep)
14) $g(x)=-f(x)$
C. Reflection
15) $g(x)=f(x-1)+5$
D. Shift left
16) $g(x)=\frac{1}{6} f(x)-3$
E. Shift right
F. Shift up
G. Shift down
