QUADRATIC AND OTHER NONLINEAR FUNCTIONS

Write the equation for the quadratic parent function, and sketch its graph.	How does changing the numbers in a quadratic equation affect the graph?	
Equation:	For $y = a(x - c)^2 + d$:	
x	Positive a: Negative a: a > 1: 0 < a < 1:	
The maximum/minimum of a quadratic function is called the	What are the other words that mean the same as the <i>x-intercepts</i> ?	
<u>Calculator</u> : 2 nd TRACE #3 or #4. Move cursor to left of vertex, press ENTER. Move cursor of right of vertex, press ENTER, then ENTER again.		
Ex. Find the vertex of $y = 3x^2 + 2x - 1$.	<u>Calculator</u> : $y_2 = 0$. 2 nd TRACE #5. Move cursor close to one x-intercept and press ENTER 3 times. Repeat the steps to find the other x-intercept.	
	Ex. Find the roots of $y = 3x^2 + 2x - 1$.	

RC#5

Now You Try!

1. How does the graph of $y = x^2 - 1$ differ from the graph of $y = x^2 + 7$?

- **A.** The graph of $y = x^2 1$ is 8 units to the left of the graph of $y = x^2 + 7$.
- **B.** The graph of $y = x^2 1$ is 8 units to the right of the graph of $y = x^2 + 7$.
- **C.** The graph of $y = x^2 1$ is 8 units above the graph of $y = x^2 + 7$.
- **D.** The graph of $y = x^2 1$ is 8 units below the graph of $y = x^2 + 7$.

Simplifying with Exponents:

Laws of Exponents:	5 Steps to Simplify:
 When multiplying, the exponents. When dividing, the exponents. When you have a negative exponent, to the other side of the fraction bar. Any base raised to the power of zero = 	 Stamp Multiply Move Divide Simplify

Now You Try!

 Which expression best represents (3a²b³c)(-3ab)(-2a³bc³)? 	2. Which expression best represents the simplification of $(3m^{-2}n^{4})(-4m^{6}n^{-7})?$	3. Simplify the expression: $\frac{5a^{-3}b^4}{6a^5b^2c^0}$
F. 18a ⁶ b ⁵ c ⁴	$\mathbf{F.} - \frac{12m^4}{n^3}$	
G. -18a ⁶ b ³ c ³	1	
H. 18a ⁶ b ⁹ c ⁴	G. $-\frac{12m^4n^3}{12m^4n^3}$	
J. -8a ⁶ b ⁵ c ⁴	H. $-\frac{m^4n^3}{12}$	
	J. $-\frac{12n^3}{m^4}$	