## QUADRATIC AND OTHER NONLINEAR FUNCTIONS

Write the equation for the quadratic parent function, and sketch its graph.

Equation:


The maximum/minimum of a quadratic function is called the $\qquad$ .

Calculator: $2^{\text {nd }}$ TRACE \#3 or \#4. Move cursor to left of vertex, press ENTER. Move cursor of right of vertex, press ENTER, then ENTER again.

Ex. Find the vertex of $y=3 x^{2}+2 x-1$.

How does changing the numbers in a quadratic equation affect the graph?

$$
\text { For } y=a(x-c)^{2}+d:
$$

Positive a: $\square$
Negative a: $\qquad$
$a>1$ : $\qquad$
$0<a<1$ :
+d : $\qquad$

- d: $\qquad$ $(x-c)$ : $\qquad$

What are the other words that mean the same as the $x$-intercepts?

Calculator: $\mathrm{y}_{2}=0.2^{\text {nd }}$ TRACE \#5. Move cursor close to one x-intercept and press ENTER 3 times. Repeat the steps to find the other x -intercept.

Ex. Find the roots of $y=3 x^{2}+2 x-1$.

1. How does the graph of $y=x^{2}-1$ differ from the graph of $y=x^{2}+7$ ?
A. The graph of $y=x^{2}-1$ is 8 units to the left of the graph of $y=x^{2}+7$.
B. The graph of $y=x^{2}-1$ is 8 units to the right of the graph of $y=x^{2}+7$.
C. The graph of $y=x^{2}-1$ is 8 units above the graph of $y=x^{2}+7$.
D. The graph of $y=x^{2}-1$ is 8 units below the graph of $y=x^{2}+7$.

## Simplifying with Exponents:

Laws of Exponents:

- When multiplying, $\qquad$ the exponents.
- When dividing, $\qquad$ the exponents.
- When you have a negative exponent, $\qquad$ to the other side of the fraction bar.
- Any base raised to the power of zero = $\qquad$ .


## 5 Steps to Simplify:

1) $S t a m p$
2) Multiply
3) Move
4) Divide
5) Simplify

Now You Try!

1. Which expression best represents $\left(3 a^{2} b^{3} c\right)(-3 a b)\left(-2 a^{3} b c^{3}\right)$ ?
2. Which expression best represents the simplification of $\left(3 m^{-2} n^{4}\right)\left(-4 m^{6} n^{-7}\right)$ ?
F. $-\frac{12 m^{4}}{n^{3}}$
G. $-\frac{1}{12 m^{4} n^{3}}$
H. $-\frac{m^{4} n^{3}}{12}$
J. $-\frac{12 n^{3}}{m^{4}}$
