REGRESSIONS – Day 1

Recall that when scatter plots have a positive or negative correlation, you can draw a trend line to estimate the data. The trend line that shows the relationship between two sets of data most accurately is called the <u>line of best fit</u>. A graphing calculator computes the equation of the line of best fit using a method called <u>regression</u>.

3) The table below contains some points on the graph of a quadratic function.	 The table below models an exponential relationship between x and y.
x y -2 7 -1 4 2 7 3 12	x y -1 1/3 0 1 2 9 3 27
Use regression in the calculator to find a function that represents the same relationship.	Use regression in the calculator to find an equation that models this relationship.
y =	y =

If the problem does not specify linear, quadratic, exponential, etc., turn "Diagnostic On" in your calculator. Here's how:

Now when you perform regressions, the calculator will show you the <u>coefficient of determination</u> r^2 , which tells you how closely the equation models the data.

If $r^2 = 1$, the equation is a perfect fit for the data.

Use regression in the calculator to determine which equation models the relation shown.

5)	6)
x -6 -3 0 3 6 y 2 3 4 5 6	x -3 -2 -1 1 2 y 8 4 2 .5 .25
Lin / Quad / Exp y =	Lin / Quad / Exp y =
7) $x -2 -21 -14 -14 -8 -8 -8 -8 -8 -5 -7 -21 -7 -14 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 $	8) <u>x y</u> -7 30 -4 -3 -2 -15 1 -18
Lin / Quad / Exp	Lin / Quad / Exp
y =	y =