REGRESSIONS - Day 1

Recall that when scatter plots have a positive or negative correlation, you can draw a trend line to estimate the data. The trend line that shows the relationship between two sets of data most accurately is called the line of best fit. A graphing calculator computes the equation of the line of best fit using a method called regression.

Example 1: The scatterplot shows a comparison between the test grades for 8 students in a history class and the time each student spent studying.
a) What type of correlation does the scatterplot show?
b) Make a table representing the relationship.
c) Use linear regression in the calculator to find the equation of the line of best fit. Round values to the nearest hundredth.
$y=$ \qquad

m	g

Example 2: The scatterplot shows the monthly high temperatures for Austin, Texas, in degrees Fahrenheit over a 12-month period.

a) Which month had the highest temperature?
b) What was the lowest monthly high temperature during the year?
c) Which function best models the data from Month 1 to Month 9 ?
A. $y=-1.6 x+111$
B. $y=3.5 x+85$
C. $y=2.5 x+90$
D. $y=-3.3 x+130$

Monthly High Temperatures
in Austin, Texas

3) The table below contains some points on the graph of a quadratic function.

x	y
-2	7
-1	4
2	7
3	12

Use regression in the calculator to find a function that represents the same relationship.

$$
y=
$$

\qquad
4) The table below models an exponential relationship between x and y.

x	y
-1	$1 / 3$
0	1
2	9
3	27

Use regression in the calculator to find an equation that models this relationship.

$$
y=
$$

\qquad

If the problem does not specify linear, quadratic, exponential, etc., turn "Diagnostic On" in your calculator. Here's how:

$$
2^{2^{N D} 0} \underset{\rightarrow}{x^{-1} \text { (the "D" button) }} \text { DiagnosticOn ENTER ENTER }
$$

Now when you perform regressions, the calculator will show you the coefficient of determination r^{2}, which tells you how closely the equation models the data.

If $r^{2}=1$, the equation is a perfect fit for the data.

Use regression in the calculator to determine which equation models the relation shown.

