APPLICATIONS OF REGRESSIONS

Most data collected in real-world situations does not model a perfect linear, quadratic, exponential, etc relationship. Though it will not always be a perfect fit, regression in the calculator can find the line of best fit for those "messy" real-world situations.

Example 1: Remember the panda example? The table shows the relationship between the
weight of a panda and its age.

Age (months)	1	2	3	4	6	8	10
Weight (lb)	2.5	7.6	12.5	17.1	24.3	37.9	49.2

a) The data appears to follow a Lin / Quad / Exp relationship.
b) Use regression in the calculator to find the equation of the line of best fit. Round values to the nearest hundredth.
$y=$ \qquad
c) Using the equation obtained in part b, determine the approximate weight of a 7-month-old panda.

Weight of a Panda

d) Compare the answer in part c to your prediction in Topic 18-1.

Example 2: The table shows the average tuition and fees at public 4-year colleges.
a) Turn STAT Plot1 on and Zoom 9 to determine what type of function the data most closely models.

Lin / Quad / Exp
b) Use regression in the calculator to find the equation of the line of best fit.
Round values to the nearest hundredth.
$y=$ \qquad

Academic Year	Cost (\$)
$2000-2001$	3508
$2001-2002$	3766
$2002-2003$	4098
$2003-2004$	4645
$2004-2005$	5126
$2005-2006$	5492
$2006-2007$	5836

c) Use the line of best fit to estimate the cost of attending in the 2012-2013 academic year.

Previously we learned that regression can be used to find the equation/function for patterns and sequences. Not all patterns and sequences are linear...

Example 3: The regular polygons below form a pattern.

Perimeter $=\mathbf{6}$ in

Perimeter $=12$ in

Perimeter $=20$ in
a) Write an expression that can be used to determine the perimeter of the nth figure.

Lin / Quad / Exp Expression: \qquad
b) What is the perimeter of the $7^{\text {th }}$ figure?

c) Write an expression that can be used to determine the perimeter of a figure with n sides.

Lin / Quad / Exp Expression: \qquad
d) What is the perimeter of a figure with 7 sides?

Example 4: Mrs. Anderson's students occasionally play "Math Poker." Each student starts with $\$ 100$ (play money, of course). Each round, students "bet" money based on how confident they are that they can get the next math problem correct. When students get a question correct, they can add the amount of their bets to their totals. Bryson, a very confident student, decides to "go all in" each round. The table shows his earnings after three rounds.
a) If Bryson continues to get questions correct, complete the table for Rounds 4 and 5.
b) Write an equation that can be used to determine his earnings, E, after r rounds.

Lin / Quad / Exp $\quad E=$ \qquad

Round, \boldsymbol{r}	Earnings, \boldsymbol{E}
0	100
1	200
2	400
3	800
4	
5	

c) If Bryson gets every question correct, how much money will he have after 15 rounds?

