1) Solve $x^{2}+2 x=15$ by factoring.

Recall that an alternate way to solve quadratic equations is using the quadratic formula.

Quadratic Formula:

$$
\begin{aligned}
& \text { If } a x^{2}+b x+c=0 \text {, then } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Solve each quadratic equation using the quadratic formula. Leave answers in simplified radical form.
2) $x^{2}+2 x-15=0$
$a=$ \qquad ; b = \qquad ; C = \qquad
3) $-2 x^{2}-4 x+3=0$
$a=$ \qquad ; b = \qquad ; $\mathrm{c}=$ \qquad
4) $-3 x^{2}+6 x=-5$
$a=$ \qquad ; $b=$ \qquad ; $\mathrm{c}=$ \qquad

The distance formula used in Geometry also involves simplifying radicals.
Distance Formula: Given the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the distance between these points is given by the formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Find the distance between the following sets of points.
5) $(-2,1)$ and $(1,5)$

$$
d=\sqrt{(-)^{2}+(-)^{2}}
$$

6) $(2,-1)$ and $(-2,-3)$

$$
d=\sqrt{(-)^{2}+(-)^{2}}
$$

