SOLVING QUADRATIC EQUATIONS BY GRAPHING

Answer the following using the graph given.

1) Solve $x^2 - 9 = 0$

Solutions:

2) Find the roots of $y = x^2 + 2x - 15$

Roots: _____

3) Find the solutions that satisfy $-x^2 + 6x = 0$ using the graph below.

Solutions:

Vertex: _____ Max or Min

Domain: _____ Range: _____

4) Determine the roots of the function h(x) graphed below.

Roots: _____

Vertex: _____ Max or Min

Domain: _____ Range: _____

5) The graph of the equation $y = x^2 - 3x - 4$ is shown below.

_____ For what value or values of x is y = 0?

- A. x = -1 only
- B. x = -4 only
- C. x = -1 and x = 4
- D. x = 1 and x = -4

6) The table of values for a quadratic function g is shown below. Sketch a graph of g, and answer the following questions.

Х	g(x)
0	-6
2	2
3	0
4	-6

Vertex:

Axis of symmetry: _____

Domain: _____ Range: ____

If 3 is a solution to g(x) = 0, what is the other solution?

7) The function $r(x) = x^2 - 4x - 5$ has zeros at -1 and 5 and a range of all real numbers greater than or equal to -9. Sketch a graph of r(x).

Axis of symmetry: _____

Vertex: _____ Max or Min

x-intercepts:

Domain: _____ Range: _____

For what values of x does r(x) = 0?

