SOLVING QUADRATIC EQUATIONS BY FACTORING – Day 1

Recall that the **solutions** of a quadratic equation $ax^2 + bx + c = 0$ are the x-intercepts of the function, the point(s) where y = 0.

Because of this, some quadratic equations can be factored and solved using the Zero-Product Property, which says

If (a)(b) = 0, then a = 0 or b = 0.

Ex. If (x + 3)(x + 2) = 0, then x + 3 = 0 or x + 2 = 0.

STEPS TO SOLVING A QUADRATIC EQUATION BY FACTORING:

- 1) Set = 0 (Standard Form)
- 2) FACTOR COMPLETELY
- 3) Set each factor = 0
- 4) Solve

Solve.

(2n - 1)(2n + 5) = 0	$2) x^2 + 2x - 28 = 0$
(31 - 4)(31 + 3) = 0	(2) x + 3x - 20 = 0
^	
$(3) - 15 - 12y 3y^2$	$(1) 3y^2 - 6y$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$
3) $-15 - 12x = -3x^2$	4) $3x^2 = 6x$

