SOLVING QUADRATIC EQUATIONS BY FACTORING - Day 1

Recall that the solutions of a quadratic equation $a x^{2}+b x+c=0$ are the x-intercepts of the function, the point(s) where $\mathrm{y}=0$.

Because of this, some quadratic equations can be factored and solved using the ZeroProduct Property, which says

$$
\text { If }(a)(b)=0, \text { then } a=0 \text { or } b=0
$$

Ex. If $(x+3)(x+2)=0$, then $x+3=0$ or $x+2=0$.

STEPS TO SOLVING A QUADRATIC EQUATION BY FACTORING:

1) Set $=0$ (Standard Form)
2) FACTOR COMPLETELY
3) Set each factor $=0$
4) Solve

Solve.

1) $(3 n-4)(3 n+5)=0$	2) $x^{2}+3 x-28=0$
3) $-15-12 x=-3 x^{2}$	4) $3 x^{2}=6 x$

5) The area of a rectangular room is given by the equation $2 w^{2}-2 w=12$, where w is the width of the room. Find the width, and sketch a graph of the related quadratic function.

6) Which statement about $k(x)=-x^{2}-2 x+15$ is true?
A. The zeros are -3 and 5 , because $k(x)=-(x+3)(x-5)$.
B. The zeros are -5 and 3 , because $k(x)=-(x+5)(x-3)$.
C. The zeros are -5 and -3 , because $k(x)=-(x+5)(x+3)$.
D. The zeros are 3 and 5 , because $k(x)=-(x-3)(x-5)$.
