SOLVING QUADRATIC EQUATIONS USING THE QUADRATIC FORMULA

Some quadratic equations cannot be factored, but that doesn't always mean there are no solutions to the equation.

For example $x^{2}+7 x-12$ can't be factored, but the related function $y=x^{2}+7 x-12$ does have two x-intercepts, or solutions, as shown in the graph. Notice that the x-intercepts are not "pretty" numbers, or integers.

An alternate way to solve a quadratic equation is by using the Quadratic Formula.

$$
\text { If } a x^{2}+b x+c=0 \text {, then } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solve each equation using the quadratic formula. Round answers to the nearest tenth.

1) $x^{2}+7 x-12=0$
$\mathrm{a}=$ \qquad ; b = \qquad ; c = \qquad
2) $-2 x^{2}-4 x+3=0$
$a=$ \qquad ; $\mathrm{b}=$ \qquad ; c = \qquad
3) $6 x^{2}-3 x=7$
$a=$ \qquad ; b = \qquad ; $\mathrm{C}=$ \qquad
4) $x^{2}+2=3 x$
$a=$ \qquad ; b = \qquad ; $\mathrm{c}=$ \qquad
5) What are the solutions to the equation $x^{2}-4 x=-1$?
A. $x=\frac{-4 \pm \sqrt{20}}{2}$
B. $x=\frac{4 \pm \sqrt{12}}{2}$
C. $x=\frac{-4 \pm \sqrt{12}}{2}$
D. $x=\frac{4 \pm \sqrt{20}}{2}$
