FUNCTION NOTATION

A man bought x boxes of doughnuts for $\$ 3.49$ each. He paid with a $\$ 50$ bill and received the correct amount of change. If he received more than $\$ 10$ but less than $\$ 20$, which inequality represents the number of boxes of doughnuts he could have bought?
A. $8 \leq x \leq 11$
B. $8 \leq x \leq 12$
C. $9 \leq x \leq 11$
D. $9 \leq x \leq 12$

A FUNCTION can be a \qquad with \qquad values (the DOMAIN) and
\qquad values (the RANGE).

FUNCTION NOTATION is the way a function is written. The most popular function notation is $f(x)$, which is read " f of x." For example, to find $f(1)$, find the output when the input is 1 .

EXAMPLE 1: Use the table to determine Function Frank's rule.

Function Frank's Rule: Output = \qquad or $f(x)=$ \qquad .

Find each of the following: \qquad
$f(8)=$ \qquad If $f(x)=11, x=$ \qquad

EXAMPLE 2: For $\mathrm{h}=\{(-2,6),(2,8),(4,10),(6,12),(8,14)\}$, find each of the following.

1) $h(6)=$ \qquad
2) $h(8)=$ \qquad
EXAMPLE 3: The following table shows values for function $\mathrm{h}(\mathrm{x})$.

x	0	1	2	3	4
$h(x)$	-10	-7	4	29	74

1) $h(4)-3=$ \qquad
2) If $x=2$, then $h(x+2)=$ \qquad
3) $10-\mathrm{h}(2)=$ \qquad 4) If $x=0$, then $3 h(x)=$ \qquad

EXAMPLE 4: Find the range of each function for the given domain.

1) $f(x)=x^{2}-3 ; \quad D=\{-2,0,2\} ; \quad R=$ \qquad
Ordered Pairs: \qquad
2) $g(x)=-2 x-4$;
$D=\{-4,-1,2\} ;$
$R=$ \qquad

EXAMPLE 5: If $\mathrm{f}(\mathrm{x})=2-1.3 \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=.25 \mathrm{x}^{2}-9.1$, find the following.

1) $f(-2)=$ \qquad
2) $g(8)-f(3)=$ \qquad
3) $g(5)=$ \qquad
4) $f(4)+g(-1)=$ \qquad
