ANALYZING FUNCTIONAL RELATIONSHIPS - Day 1

1. Solve $8 y-2(y-3)=18$
2. Solve $2(t+2)-3 t=-1$

The domain and range of a function can be discrete or continuous. Consider the domain of two different functions:

EXAMPLE 1: On average, Jay can ride his bike 12 miles in one hour. The function $m=12 h$ represents the number of miles, m, he can ride in h hours.

1. Input variable: \qquad Output variable: \qquad
2. How many miles can Jay ride in 3 hours? \qquad
3. How long does it take Jay to ride 18 miles? \qquad
4. After work, Jay only has 4 hours to ride his bike before it gets dark. What domain and range are reasonable for this situation?

D: \qquad R: \qquad
5. Circle one: The domain is discrete / continuous.

EXAMPLE 2: The total cost in dollars to buy uniforms for the players on a volleyball team can be found using the function $c=34.95 u+6.25$, where u is the number of uniforms bought.

1. What is the total cost of buying 10 uniforms? \qquad
2. How many uniforms can be purchased with $\$ 400$? \qquad
3. Circle one: The domain is discrete / continuous.
4. \qquad If there are at least 8 players but not more than 12 players on the volleyball team, what is the domain of the function for this situation?
A. $0<u \leq 12$
B. $0<c \leq 425.65$
C. $\{8,9,10,11,12\}$
D. $\{285.85,320.80,355.75,390.70,425.65\}$

EXAMPLE 3: Katie goes to a flower shop to order flowers for her friend's birthday. The total cost of the flowers, T, can be found using the equation $T=0.60 \mathrm{~L}+7.50$, where L represents the number of lilies used in the arrangement.

1. What is the total cost for 10 lilies? \qquad
2. Katie wants to include at least 10 lilies in the arrangement, but only has $\$ 15$ to spend. What is the range for this situation?

Range: \qquad
What is the maximum value of the domain for this situation? \qquad
3. Circle one: The domain is discrete / continuous.

