

The domain and range of a function can be *discrete* or *continuous*. Consider the domain of two different functions:

EXAMPLE 1: On average, Jay can ride his bike 12 miles in one hour. The function m = 12h represents the number of miles, *m*, he can ride in *h* hours.

1.	Input variable:	Output variable:
2.	How many miles can Jay ride in 3 hours?	
3.	How long does it take Jay to ride 18 miles?	

- 4. After work, Jay only has 4 hours to ride his bike before it gets dark. What domain and range are reasonable for this situation?
 - D: _____ R: _____
- 5. *Circle one:* The domain is discrete / continuous.

EXAMPLE 2: The total cost in dollars to buy uniforms for the players on a volleyball team can be found using the function c = 34.95u + 6.25, where *u* is the number of uniforms bought.

1. What is the total cost of buying 10 uniforms? _____

2. How many uniforms can be purchased with \$400? _____

- 3. Circle one: The domain is discrete / continuous.
- 4. _____ If there are at least 8 players but not more than 12 players on the volleyball team, what is the domain of the function for this situation?
 - A. $0 < u \le 12$
 - B. $0 < c \le 425.65$
 - $C. \quad \{8,\,9,\,10,\,11,\,12\}$
 - D. {285.85, 320.80, 355.75, 390.70, 425.65}

EXAMPLE 3: Katie goes to a flower shop to order flowers for her friend's birthday. The total cost of the flowers, T, can be found using the equation T = 0.60L + 7.50, where L represents the number of lilies used in the arrangement.

1. What is the total cost for 10 lilies? _____

2. Katie wants to include at least 10 lilies in the arrangement, but only has \$15 to spend. What is the range for this situation?

Range: _____

What is the maximum value of the domain for this situation?

3. Circle one: The domain is discrete / continuous.