## ANALYZING GRAPHS OF FUNCTIONS - Day 1

## BELL WORK

A store manager begin's each shift with the same total amount of money. She keeps $\$ 200$ in a safe and distributes the rest equally to the 5 cashiers in the store. This situation can be represented by the function $\mathrm{y}=\frac{x-200}{5}$. What does the variable x represent in this situation?
A. The total amount of money the manager has at the beginning of a shift.
B. The total amount of money the manager has at the end of the shift.
C. The amount of money each cashier has at the beginning of a shift.
D. The amount of money each cashier has at the end of a shift.

EXAMPLE 1: The sentences below describe the motion of 5 cars on a highway. Match each sentence with the graph that represents it best.

1. The car's speed remains constant. $\qquad$
2. The car's speed increases slowly but steadily. $\qquad$
3. The car's speed increases sharply. $\qquad$
4. The car's speed decreases gradually. $\qquad$
5. The car's speed decreases suddenly. $\qquad$






EXAMPLE 2: Choose the graph that best fits the situation.
6. Stayed the same, rose steadily, remained constant, and dropped sharply. $\qquad$
7. Increased steadily, remained constant, rose slightly and dropped suddenly. $\qquad$
8. Remained steady, rose steadily, dropped steadily and remained the same. $\qquad$




## EXAMPLE 3:

Matt walks to school at a steady pace.
His pace slows as he walks up a large hill.
He then runs down the other side.
Draw a sketch that represents Matt's distance from home as he walks to school.


EXAMPLE 4: Robert rode a bike from school to a recreation center. The graph shows Robert's distance in miles, $y$, from the recreation center after riding the bike for $x$ minutes.

9. How far is the school from the recreation center? $\qquad$
10. How long does it take Robert to bike from school to the rec center? $\qquad$
11. Circle one: Discrete or Continuous
12. Domain: $\qquad$
Range: $\qquad$

EXAMPLE 5: The graph shows the relationship between $y$, the number of cookies a presenter at a convention had left to give away and $x$, the number of presentations she had made.

Cookies at Presentation

13. How many presentations can be made before running out of cookies? $\qquad$
14. How many cookies did she begin with?
$\qquad$
15. How many cookies were left after 4 presentations? $\qquad$
16. Circle one: Discrete or Continuous
17. Domain: $\qquad$

