FACTORING TRINOMIALS - Day 2

Factor each trinomial completely.

1. $7 x^{2}-12 x-4=\ldots$	2. $2 x^{2}-162=$
3. $8 x^{2}-28 x+32=\ldots$	$4.20 x^{3}-8 x^{2}-28 x=$

Answer the following.

5. How is $3 x^{2}+7 x+2$ expressed as the product of two binomials?	6. Write $x^{2}-64$ in factored form.
7. Which of the following is not one of the factors of $10 x^{2}-6 x-4$?	8. Which expression is a factor of $x^{2}+6 x-16 ?$
A. 2	A. $x-8$
B. $x+1$	B. $x-2$
C. $5 x+2$	C. $x-4$
D. $x-1$	D. $x-3$

9. A rectangular prism has the volume shown below. What three expressions can be used to represent the dimensions of the prism?

Review. Show appropriate work.
10. Solve the following equation for x :

$$
2(x+3)-5=17-(4 x-2)
$$

11. What value of x makes the following equation true?

$$
21=\frac{4}{9} x-7
$$

12. The Math Club sold hamburgers and cheeseburgers at a football game. They used 300 buns and made $\$ 1000$. If the hamburgers sold for $\$ 3$ each and cheeseburgers for $\$ 3.50$ each, which system of equations can be used to find h, the number of hamburgers and c, the number of cheeseburgers sold?
A. $3.50 h+3 c=1000$
C. $3.50 c+3 h=1000$
$h+c=300$
$c+h=300$
B. $3 h+3.50 c=300$
$h+c=1000$
D. $3.50 \mathrm{c}+3 \mathrm{~h}=300$
$c+h=1000$
13. For the line $y=m x+b$, where $\mathrm{m}<0$ and $\mathrm{b}>0$, what change would occur if m is multiplied by -1 and b remains the same?
F. The y-intercept would become positive.
H. The new line is parallel to the original
G. The slope would become positive.
J . The new line is perpendicular to the original.
